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Abstract

Blood coagulation is a basic physiological defense mechanism that occurs in all vertebrates to prevent blood loss following
vascular injury. In all species the basic mechanism of clot formation is similar; when endothelium is damaged a complex sequence of
enzymatic reactions occurs that is localized to the site of trauma and involves both activated cells and plasma proteins. The reaction
sequence is initiated by the expression of tissue factor on the surface of activated cells and results in the generation of thrombin, the
most important enzyme in blood clot formation. Thrombin converts soluble fibrinogen, via soluble fibrin monomers, into the in-
soluble fibrin that forms the matrix of a blood clot as well as exerting positive-feedback regulation that effectively promotes ad-
ditional thrombin generation that facilitates the rapid development of a thrombus. Both spontaneous and trauma-induced
haemorrhagic episodes can develop in all mammals with inherited or acquired abnormalities in one or more of the coagulant
proteins.

Experimental studies with plasma from a wide range of species have led to the conclusion that there are extensive differences in
the rates of thrombin generation and fibrin formation among species. However, current evidence suggests that at least some of these
quantitative differences are likely due to the use of non-species specific laboratory reagents. Although the individual proteins in-
volved in the procoagulant pathways exhibit similar functions in all animals, differences in amino acid sequence cause incomplete
homology and varying degrees of immunological cross-reactivity for the same protein across species.
! 2003 Elsevier Ltd. All rights reserved.

Keywords: Blood coagulation; Vertebrates; Haemostasis; Thrombosis

1. Introduction

Haemostasis is a fundamental defense mechanism of
all vertebrates and involves two complementary pro-
cesses: the formation of a blood clot, or thrombus, to
stem blood loss from a damaged vessel and the process
of thrombus dissolution, or fibrinolysis, once endothe-
lial repair has occurred. These are complex processes
involving multiple interdependent interactions among
platelets, endothelial cells, white cells and plasma pro-
teins. By convention, many of the procoagulant plasma
proteins are referred to as Factors with assigned Roman
numeral designations. The proteases involved in clot
formation circulate in their inactive, or zymogen, forms

that, in healthy animals, only become biologically active
when the vasculature is perturbed.

In part because of the limited availability of reliable
laboratory assays for use with plasma from non-human
vertebrates, comparative aspects of the fibrin clot for-
mation processes are better understood than are those of
fibrin clot dissolution or fibrinolysis. Thrombin is the
most important enzyme in the haemostatic process and
is produced ‘‘on demand’’ from its circulating precursor,
prothrombin, in response to any type of haemostatic
activator. The sequential and co-ordinated interactions
of the procoagulant proteins that initiate and amplify
thrombin formation (Fig. 1) are offset by a group of
circulating anticoagulant, or inhibitory, proteins that
function to ensure that thrombin generation is confined
to the area of vascular trauma and that excess thrombin
is not generated (Gentry and Downie, 1993). There is

The Veterinary Journal 168 (2004) 238–251

www.elsevier.com/locate/tvjl

The
Veterinary Journal

* Tel.: +1-519-824-4120; fax: +1-519-767-1450.
E-mail address: pgentry@uoguelph.ca (P.A. Gentry).

1090-0233/$ - see front matter ! 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tvjl.2003.09.013



limited information about the anticoagulant proteins in
non-human plasma (Johnstone, 2000). Hence, this re-
view focuses on comparative aspects of the interaction
of the procoagulant proteins and fibrin formation in
vertebrates.

2. Evolution of blood clotting in vertebrates

In both anthropods and vertebrates, blood clot for-
mation occurs following trauma to a vessel wall that, in
turn, initiates a cascade of enzymatic reactions culmi-
nating in the conversion of a soluble protein into an
insoluble polymer (Iwanaga, 1993; Theopold et al.,
2002). In the horseshoe crab (Limulus spp.), activation
of the clotting system causes the release of procoagulant
proteins from haemocytes (Iwanaga et al., 1992). This
response is analogous to the role of vertebrate platelets
in clot formation. In lobsters, crabs and crayfish, the
final reaction in the haemostatic process is the conver-
sion of a vitellogenin-like protein to its insoluble form
by a transglutaminase enzyme (Iwanaga, 1993; Hall
et al., 1999). This reaction is similar to the thrombin-
activated transglutaminase (Factor XIII) modification
of soluble fibrin to insoluble fibrin in vertebrates
(Spurling, 1981; Aeschlimann and Paulsson, 1994). In a
comparative study, similar levels of Factor XIII were
observed in plasma from 15 species including poultry,
laboratory and domestic animals, although immuno-
logical differences were noted, especially between the
avian and mammalian forms of the protein (Lopaciuk

et al., 1978). In contrast, among all species there is
considerable structural similarity in the fibrinogen
molecule (Doolittle, 1984).

It has been postulated that procoagulant proteins
have evolved in vertebrates through the classical route
of gene duplications, point mutations and divergence of
function from ancestral proteins that are part of the
general defense system that protects against infection
and injury (Patthy, 1990). Based on the isolation and
characterization of cDNAs from chickens and puffer fish
(Fugu rubripes) with sequence identity to Factor V (FV),
Factor VII (FVII), Factor VIII (FVIII), Factor IX
(FIX) and Factor X (FX), and the occurrence of these
proteins along with prothrombin in the blood of ze-
brafish, it has been suggested that these haemostatic
proteins are present in all jawed vertebrates (Jaga-
deeswaran and Sheehan, 1999; Davidson et al., 2003).
The blood coagulation enzymes, namely prothrombin,
FVII, FIX and FX are each closely related to hapto-
globin and the complement proteases, C1r and C1s
(Patthy, 1990). Similarly, FV and FVIII, the protein co-
factors involved in thrombin generation (Fig. 1), are
structurally related to ceruloplasmin, a copper-carrying
acute phase protein that may also have anticoagulant
properties (Church et al., 1984; Walker and Fay, 1990;
Gentry, 1999). Tissue Factor (TF), the protein now
recognized to be the primary stimulant to thrombin
generation and, hence, to fibrin formation, is a member
of the transmembrane cytokine family (Nemerson, 1988;
Camerer et al., 1996; Morrissey, 2001). In contrast,
Factor XI (FXI), like the other components of the
‘‘contact system’’, namely Factor XII (FXII), prekalli-
krein (PK) and high molecular weight kininogen (HK),
appears to be derived from different ancestral proteins
that are related to digestive enzymes (Patthy, 1990).
Considering the differences in digestive physiology
among vertebrates it is perhaps not surprising that, of all
the haemostatic proteins, this group of proteins shows
the most variation amongst species.

3. The blood coagulation cascade: current concepts

In the classical model of fibrin formation two inter-
related pathways of thrombin generation and hence fi-
brin formation were proposed. In the 1960s, the Contact
Activation, or Intrinsic, pathway was considered to be
the primary pathway that triggered thrombin formation
following trauma to the vascular endothelium while the
Extrinsic pathway was thought to be a complementary
pathway by which thrombin could be formed (Mac-
Farlane, 1964; Davie and Ratnoff, 1964). As the role of
the various proteins involved in the coagulation cascade
has been elucidated, these models of thrombin genera-
tion and fibrin formation have been revised. In the
current model only a single pathway, the Tissue Factor
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Fig. 1. Schematic diagram of the coagulation cascade. The initiation of
blood clot formation occurs following vascular injury and the exposure
of tissue factor (TF) to circulating blood. Thrombin exerts positive
feedback regulation (dotted lines) by activating platelets and other
procoagulant proteins. Activated platelets provide a phospholipid (PL)
surface that serves to enhance enzyme complex formation. Platelet
aggregates are anchored to damaged endothelium by von Willebrand
Factor (vWF). The majority of proteins are designated as factors (F)
and Roman numerals.
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pathway, formerly known as the Extrinsic pathway, is
considered to be involved in the initiation of thrombin
formation (Davie et al., 1991; Nemerson, 1992; Mann
et al., 1992; Zwaal et al., 1998; Gailani, 2000; Dahlback,
2000). The Intrinsic pathway is now variously referred
to as the Amplification, or Propagating pathway. A
simplified schematic model of the current concept of
thrombin generation and fibrin clot formation is shown
in Fig. 1. One of the attractions of the revised model is
that, unlike the two pathway scheme, it is relevant for all
classes of vertebrates.

3.1. Initiation and propagation of thrombin formation

Tissue factor (TF) is a lipid-dependent transmem-
brane glycoprotein that is sequestered in the circulation
in quiescent endothelial cells and monocytes. Following
cellular activation by vascular trauma or an inflamma-
tory stimulus, TF becomes exposed on the plasma
membrane where it interacts with circulating FVII, or its
activated form, FVIIa, to form the enzymatically reac-
tive TF–FVIIa complex (Fig. 1). This complex functions
primarily to convert FX to its activated form, FXa, but
it also activates circulating FIX to FIXa (Gailani and
Broze, 1991; Mann et al., 1998; Bajaj and Joist, 1999;
Dahlback, 2000). FXa and FIXa can either remain as-
sociated with TF-bearing cells or they can diffuse into
the blood and bind to negatively charged phospholipids
(PL) exposed on the surface of activated endothelial
cells or nearby activated platelets that have been at-
tracted to the site of vascular damage (Monroe et al.,
2002). The generation of thrombin requires the forma-
tion of the ‘‘prothrombinase complex’’ that consists of
FXa, phospholipid, calcium and a protein co-factor,
FV. The first few molecules of thrombin generated by
this ‘‘prothrombinase complex’’ initiate several positive-
feedback reactions that sustain its own formation and
facilitate the rapid growth of the blood clot or thrombus
around the area of vascular damage. For example,
thrombin can convert FXI to its proteolytically active
form, FXIa, that, in turn, converts FIX to FIXa (Min-
nema et al., 1999). FVIII normally circulates in a com-
plex with von Willebrand factor (vWF) which effectively
extends the plasma half-life of FVIII because it is pro-
tected from proteolytic degradation in the complex
form. Thrombin not only dissociates FVIII from vWF
but it also converts it to a more potent co-factor,
FVIIIa. Both of these reactions facilitate the formation
of the highly reactive ‘‘tenase complex’’ that consists of
FIXa, FVIIIa, calcium and phospholipid. This ‘‘tenase
complex’’ cleaves FX at the same reactive site as that
cleaved by the TF–FVIIa complex and hence produces
the same FXa product (Furie and Furie, 2000). The
thrombin-induced conversion of FV to FVa, along with
the increased availability of FXa, enhances the rate and
extent of thrombin formation by the ‘‘prothrombinase’’

complex. Another positive feed-back response is the
increased availability of phospholipids on the surface on
thrombin-activated platelets that accumulate at sites of
vascular damage (Gentry, 2000).

The formation of a blood clot that is impermeable to
blood flow occurs once an insoluble fibrin meshwork
forms around platelet aggregates. Thrombin first cleaves
two peptides, fibrinopeptides A and B, from fibrinogen
which alters the surface charge of the molecule and al-
lows a covalently linked network of fibrin monomers to
develop. These fibrin monomers are converted to
insoluble fibrin polymers by the action of thrombin-
activated Factor XIII (FXIIIa) that forms cross-links of
stable peptide bonds between and within the fibrin
strands to generate the insoluble fibrin polymers that
form the backbone of a thrombus or blood clot (Gentry
and Downie, 1993; Bick and Murano, 1994).

3.2. The revised coagulation cascade and inherited haem-
orrhagic disorders

FVII deficiency in beagles was one of the first inher-
ited canine coagulation defects to be described (Poller
et al., 1971; Spurling et al., 1972). FVII-homozygous
deficient dogs, unlike dogs with an inherited defect of
either FVIII or FIX, are usually clinically asymptomatic
(Dodds, 1974; Fogh and Fogh, 1988). This differential
haemorrhagic tendency in dogs with different coagula-
tion factor deficiencies is similar to that observed in
people. Inherited deficiencies of FVIII (Haemophilia A)
and of FIX (Haemophilia B) have been identified in
many breeds of dogs and less frequently in cats, horses
and cattle (Fogh and Fogh, 1988; Dodds, 1997). Se-
verely affected animals with <2% of normal circulating
activity of either FVIII or FIX usually exhibit sponta-
neous haemorrhagic episodes while animals with 5+% of
normal activity exhibit a broader range of symptoms
from bleeding only in response to various types of stress,
such as strenuous exercise, surgery and trauma, to se-
vere spontaneous haemorrhaging. The severity of clini-
cal symptoms in animals with deficiencies in either
FVIII or FIX compared to those in animals with FVII
deficiency was one of the reasons why the pathway that
included FVIII and FIX was assigned the primary role
in the original cascade, or waterfall, hypothesis of co-
agulation and only a secondary role was assigned to the
pathway that included FVII (MacFarlane, 1964; Davie
and Ratnoff, 1964).

In recent years considerable progress has been made
in understanding the physiological roles of individual
haemostatic proteins, especially from studies in which
specific gene targeting in mouse embryonic stem cells
creates a ‘‘knock-out’’ mouse that fails to express a
specific coagulation factor (Carmeliet and Collen, 1996;
Degen, 2001). These studies have shown that a gene
deletion for TF (Bugge et al., 1996), FVII (Rosen et al.,
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1997), FX (Dewerchin et al., 2000), FV (Cui et al., 1996)
or prothrombin (Sun et al., 1998; Xue et al., 1998) re-
sults in fatal neonatal haemorrhaging and hence is in-
compatible with survival to adulthood. Consequently,
animals that are homozygous deficient in any on these
proteins would not be expected to survive. Indeed, no
inherited defects associated with the absence of either
prothrombin or FV have been reported in domestic
animals. Homozygous FX-deficient dogs with less than
10% of normal plasma FX activity are frequently still-
born or die as neonates from internal bleeding. Het-
erozygous animals that have plasma FX activity above
30% of normal values are generally asymptomatic
(Dodds, 1973; Cook et al., 1993). In contrast, FVII
deficiency appears to be generally asymptomatic in both
the homozygous and heterozygous condition. The
plasma FVII activity in a mixed breed dog who exhib-
ited abnormal bleeding following routine orchectomy
was determined to be 0.4% of normal (Macpherson
et al., 1999). This amount of FVII is apparently suffi-
cient to trigger thrombin generation when necessary
because the owners have not reported any spontaneous
haemorrhages in the dog in the five years since it was
first diagnosed. Studies with transgenic mice indicate
that, like FVII, only trace amounts of TF are required to
initiate thrombin formation. Manipulation of the TF
gene to produce approximately 1% of normal TF levels
was sufficient to restore normal development and hae-
mostasis in homozygous TF!/! mice (Graham et al.,
1998).

In contrast to the effect of gene deletions involving
individual components of the Tissue Factor Pathway,
gene disruption of either the FVIII (Bi et al., 1996), FIX
(Lin et al., 1997; Wang et al., 1997), vWF (Denis et al.,
1998) or FXI (Gailani et al., 1997) gene is compatible
with survival to sexual maturity in mice. However, as
occurs in domestic animals and people with inherited
defects in the synthesis of each of these haemostatic
proteins, both spontaneous and trauma-induced haem-
orrhagic episodes of varying degrees of severity occur in
the transgenic mice (Degen, 2001).

While TF expression and the formation of FXa by
the TF–FVIIa complex (Fig. 1) is effective at initiating
thrombin formation, this pathway cannot sustain
thrombin generation for an extended period of time
because of the presence of an anticoagulant known as
tissue factor pathway inhibitor (TFPI). This protein
circulates in blood bound to lipoproteins and platelets
which release their TFPI after thrombin stimulation
(Novotny et al., 1998). The primary function of TFPI is
to inhibit the activation of FXa by TF–FVIIa (Broze,
1995). Studies with TFPI!/! mice have provided evi-
dence for the potential importance of TFPI in prevent-
ing thrombophilia due to unregulated thrombin
formation. TFPI gene disruption causes intrauterine
intravascular thrombi, consumptive coagulopathies and

lethal haemorrhages in mouse embryos (Huang et al.,
1997). Although plasma TFPI does not appear to have
been evaluated in plasma from many domestic animals,
it has been measured in bovine plasma (Roach et al.,
2002).

An inherited deficiency of vWF in animals was first
identified in swine in 1941 and, because of the similari-
ties in the human and porcine forms of the disorder, not
only is porcine vWF the oldest known model of a hu-
man bleeding diathesis but the pig has become one of
the most widely used models for human coagulation
research (Hogan et al., 1941; Fass et al., 1976; Denis and
Wagner, 1999; Munster et al., 2002). vWF deficiency is
the most common inherited bleeding disorder in dogs
having been identified in over 50 breeds (Thomas, 1996;
Brooks, 2000). When the vasculature is damaged vWF,
released from storage in Weibel–Palade bodies in en-
dothelial cells, augments plasma vWF and initially al-
lows unactivated platelets to adhere around the area of
trauma. After platelets have been activated vWF, along
with fibrinogen, mediates platelet–platelet interactions
that permit the anchoring and stabilization of the clot,
or thrombus (Fig. 1). The role of vWF is particularly
important at the high shear rate conditions encountered
in arterioles and the microcirculation (Baumgartner
et al., 1980). In all species, quantitative and/or qualita-
tive abnormalities of vWF are characterized by haem-
orrhaging from mucosal surfaces and or excessive
bleeding after surgery or trauma.

In dogs, as in people, vWF disease is classified in one
of the three major categories depending on the size
distribution and functional attributes of the circulating
vWF multimers (Thomas, 1996; Denis and Wagner,
1999; Brooks, 2000). The multimers, which are formed
by the post-translational assembly of the parent dimeric
molecule, are important in the haemostatic process be-
cause, at least in dogs, cats, pigs and people, the high
molecular weight multimers are more active in their
ability to support platelet adhesion than are low mo-
lecular weight multimers (Denis and Wagner, 1999). In
ferrets, low molecular weight vWF multimers are the
predominant plasma form of the protein (Hoogstraten-
Miller et al., 1995). There appear to be conformational
differences in the vWF protein among species since vWF
of porcine and bovine origin, unlike human vWF, can
aggregate human platelets in vitro without any other
platelet agonist being present (Forbes and Prentice,
1973; Altieri et al., 1986). Because of the increased in-
stability of FVIII, reduced plasma FVIII activity is one
of the characteristics of reduced plasma vWF antigen
levels in both dogs and people (Denis and Wagner,
1999). However, a similar correlation between FVIII
activity and vWF antigen levels is not consistently ob-
served in pigs (Fass et al., 1976).

Although homozygous deficiency of plasma FXI does
not appear to be associated with reduced reproductive
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efficiency in mice (Gailani et al., 1997) or dogs (Dodds
and Kull, 1971; Knowler et al., 1994), it is associated
with delayed ovulation and increased fetal loss in Hol-
stein cattle (Liptrap et al., 1995). The decreased repro-
ductive efficiency in clinically asymptomatic cows may
explain why relatively few homozygous FXI deficient
cows have been identified in dairy herds relative to the
number of heterozygous FXI deficient animals (Gentry
and Ross, 1995). The discrepancy in fertility rates in
transgenic mice and dairy cows serves to illustrate the
potential pitfall of extrapolating results of studies with
laboratory animals to larger domestic animals.

3.3. Contact activation system

Several of the components of the classical contact ac-
tivation pathway of coagulation, including FXII (Hag-
eman factor), high molecular weight kininogen (HK) and
prekallikrein (PK) do not appear in the revised coagu-
lation scheme (Fig. 1). This group of proteins was initially
considered to be important in thrombin formation after it
was discovered that, when blood came into contact with a
negatively charged foreign surface, FXII underwent a
conformational change that enabled it to convert FXI to
FXIa (Wachtfogel et al., 1993). This reaction still forms
the basis for the laboratory test known as the activated
partial thromboplastin time (APTT) that is used to
evaluate abnormalities of the coagulation factors in
plasma with the exception of FVII and FXIII. However,
in vivo, activation of the contact system occurs inde-
pendently of negatively charged surfaces (Gailani and
Broze, 1991; Colman and Schmaier, 1997). It is postu-
lated that the physiological equivalent to the negatively
charged surface is the assembly of this group of proteins
on cell membranes (Colman and Schmaier, 1997). In-
deed, FXI activation can occur on the plasma membrane
of activated platelets in the absence of FXII (Oliver et al.,
1999). The contact activation coagulation hypothesis was
further undermined by the fact that no haemostatic ab-
normalities occur in people with an inherited deficiency
of either Factor XII, PK or HK (Kitchens, 2002). Simi-
larly, FXII deficiency is an asymptomatic condition in
dogs and cats (Green and White, 1977; Kier et al., 1980).
For example, PK deficiency was discovered, fortuitously,
in two mature dogs as a result of routine coagulation
screening (Chinn et al., 1986; Lisciandro et al., 2000).
However, it is possible that animals with reduced levels of
FXII and PK are predisposed to developing haemor-
rhagic problems. In a Belgian stallion that bled exces-
sively following castration plasma PK was found to be
<1% of normal (Geor et al., 1990) and gastrointestinal
haemorrhage in a one-year-old Chinese Shar Pei led to
the discovery that the dog had a combined FXII and PK
deficiency (Otto et al., 1991).

FXI is the only contact phase protein that clearly has
a physiological role in blood coagulation (Bouma and

Meijers, 2000). This conclusion is based not only on the
ability of thrombin to activate FXI (Gailani and Broze,
1991) but also on the observations that people (Ragni
et al., 1985; Bolton-Maggs et al., 1988), cattle (Gentry
and Ross, 1995; Ogawa and Iga, 1998) and dogs (Dodds
and Kull, 1971; Knowler et al., 1994) deficient in plasma
FXI exhibit haemorrhagic episodes of varying severity
and frequency.

4. Procoagulant protein differences among species

4.1. Fibrinogen

There is more information available about the bio-
chemical and physiological aspects of fibrinogen than
any other haemostatic protein. This is due, in part, to
the fact that plasma fibrinogen levels are at least 20-fold
higher than any of the other coagulation factors. For
example, in human plasma normal fibrinogen levels are
2.0–4.0 g/L compared to 100 mg/L for prothrombin and
10, 5 and 0.5 mg/L for Factor X, Factor IX and Factor
VII, respectively (Roberts and Tabares, 1995). Further,
fibrinogen is one of the haemostatic proteins that is
routinely assessed in veterinary medicine as a compo-
nent of haematological evaluations. In all species plasma
fibrinogen is synthesized in the liver and is released into
the circulation as a molecule consisting of three non-
identical polypeptide chains, designated as Aa, Bb and
c, that are linked by disulphide bridges (Lord, 1995;
Gentry, 1999). Although the synthesis of each chain is
controlled by a separate gene, only the Aa chain appears
to have structural diversity among species (Doolitte,
1973; Crabtree et al., 1985; Yang et al., 2000). Based
on both structural and functional studies, it has been
estimated that the fibrinogen molecule isolated from
human, baboon, rabbit, dog, and rat plasma is evolu-
tionary divergent from that of the fibrinogen molecule
found in cow, pig, horse, goat, and sheep plasma
(Henschen et al., 1983; Frost and Weigel, 1990).

Using a spectrophotometric method to detect clottable
protein, plasma fibrinogen values have been estimated to
range from 86% to 170% of normal human values in
domestic and laboratory animals and in poultry (Lopa-
ciuk et al., 1978). More recent studies have employed the
modified thrombin clotting assays based on the Clauss
method (Clauss, 1957).With this method cattle andwater
buffalo generally exhibit higher fibrinogen values (2.0–8.0
g/L) while the values for domestic cats and rabbits are
generally lower (0.5–3.0 g/L). A fibrinogen range of 1.4–
3.0 g/L was recorded in llama plasma (Morin et al., 1995)
which is similar to the range reported for fish (Pavlidis et
al., 1999) and avian species (Frost et al., 1999). Fibrino-
gen values of 4.2–4.4 and 4.1–5.1 g/L have been recorded
for the iguana and Asian elephant, respectively (Kubalec
et al., 2002; Gentry et al., 1996).
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Unlike other haemostatic proteins, an increased rate
of fibrinogenesis is a uniform response of the liver to
hepatocyte damage induced by infectious, toxic, or
metabolic agents. This response is translated into hy-
perfibrinogenaemia which is characteristic of a broad
range of bacterial infections and other inflammatory
conditions in vertebrates ranging from Xenopus (Bhat-
tacharya et al., 1991), poultry (Espada et al., 1997), mice
(Rofe et al., 1996), rabbits (Gentry et al., 1992), dogs
(Eckersall and Conner, 1988; Otto et al., 2000), horses
(Topper and Prasse, 1998a; Hulten and Demmers,
2002), cattle (Deldar et al., 1984), sheep (Fernandez
et al., 1995; O!Brien et al., 1995) and exotic animals
(Hawkey and Hart, 1987). The increased production of
fibrinogen in response to inflammatory stimuli may be
related to its role, and that of its thrombin-modified
form fibrin, as a modulator of the inflammatory re-
sponse. Fibrin(ogen) can enhance fibroblast migration
and proliferation and facilitate leukocyte-endothelial
cell adhesion and transmigration at inflammatory sites
(Brown et al., 1993; Vogels et al., 1993; Languino et al.,
1995).

4.2. Vitamin K-dependent proteins

The observation that vitamin K is an essential nu-
trient for normal haemostasis was first recognized in
poultry as a result of feeding low fat diets to chickens
(Dam, 1929). The association between haemorrhagic
disease and the ingestion of mouldy corn by cattle
(Campbell and Link, 1941) led to the discovery of the
dicoumarol family of anticoagulant drugs. Because vi-
tamin K is required for the synthesis of biologically
functional forms of prothrombin and FVII, FIX and
FX, it is perhaps not surprising that few inherited dis-
orders related to defects in vitamin K metabolism have
been observed in animals. A vitamin K-dependent co-
agulopathy has been reported in Devon Rex cats
(Maddison et al., 1990; Soute et al., 1992; Littlewood
et al., 1995), a Labrador Retriever (Mason et al., 2002),
and in Rambouillet sheep (Baker et al., 1999). The
haemorrhagic phenotype appears most severe in sheep.
Lambs may have a greater sensitivity to conditions that
influence vitamin K-dependent proteins because, com-
pared to adults, fetal sheep, like fetal humans, have low
vitamin K-dependent coagulation factors during the last
trimester of gestation (Fantl and Ward, 1960; Moalic
et al., 1989; Andrew et al., 1990). This is one of the
reasons why lambs have been used as a model for the
development of blood coagulation (Kisker et al., 1981)
rather than other species such as the rabbit kit or calves
who are born with adult levels of FVII, FIX and FX
(Massicotte et al., 1986; Gentry et al., 1994).

Until recently the only laboratory techniques avail-
able for the quantitation of activity levels of specific

coagulation factors were based on the ability of a test
plasma to correct the clotting time of human plasma
obtained from an individual with an inherited deficiency
in one of the factors (Johnstone, 1988; Dodds, 1997). In
veterinary practice, this type of assay system assumes
that there is sufficient structural homology between the
human proteins and those of other species that they can
react interchangeably in the thrombin generating path-
way. Plasma from most mammalian species will correct
the prolonged clotting time of human factor-deficient
plasma to a greater or lesser extent. Hence, this type of
assay has utility in diagnostic laboratories in which
haemostatic abnormalities are being evaluated, partic-
ularly when the activity in a test plasma sample can be
compared to a matched species control sample. How-
ever, this type of assay is not necessarily reliable when
the absolute activity for a non-human species is being
determined. For example, using the coagulation cor-
rection time assay, prothrombin activity has been re-
ported as 8–30% for avian plasma (Lewis, 1996) and
36–43% for sheep and cattle plasma (Karges et al., 1994)
relative to human plasma. In contrast, when pro-
thrombin is evaluated in chicken, sheep and bovine
plasma with a direct activation chromogenic assay sys-
tem, the prothrombin activity is estimated to be 87%,
44% and 121% of human reference plasma, respectively
(Fig. 2). In this chromogenic assay, prothrombin is ac-
tivated by specific cleavage with the enzyme Ecarin
which is extracted from the venom of the saw-scaled
viper (Echis carinatus). Prothrombin activity is quanti-
fied by an absorbance change in the reaction mixture
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Fig. 2. Representative standard curves for prothrombin activity, as-
sessed with a chromogenic assay, in serial dilutions of pooled citrated
plasma from several species. A 100% value represent the prothrombin
activity determined in a plasma sample diluted 10-fold. For clarity, the
human reference plasma curve, which falls between that of the cow and
elephant seal plasma, has been omitted.
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when the activated prothrombin interacts with a syn-
thetic substrate. As shown in Fig. 2, prothrombin ac-
tivity in plasma from a broad range of species can be
evaluated with this assay. The assay system is sensitive
to alterations in plasma prothrombin activity as illus-
trated by the correlation in the reduction in substrate
conversion as the dilution of the sample is increased.
Moreover, the similarity of the slope of the curves sug-
gests that the Ecarin enzyme can cleave prothrombin
from each species in a similar manner. This conclusion is
in agreement with those of an earlier study that used
electrophoretic analysis to demonstrate that the activa-
tion of chicken and bovine prothrombin was similar
(Walz, 1978).

The similarity in the response of the vertebrate pro-
thrombin to direct activation may be related to the
conservation among species of amino acid sequence
around the reactive site. Although the conservation of
the amino acid sequence for the complete prothrombin
molecule is estimated at only 41%, there is no variance in
the 10 glutamate residues that are critical for the for-
mation of functionally active prothrombin which con-
sistent with a common mechanism for vitamin
K-dependent carboxylation (Banfield et al., 1994).
Among the advantages of the prothrombin chromogenic
assay is that, unlike the coagulation assay, it is not
phospholipid-dependent and, at least for feline plasma,
yields similar results whether plasma is prepared with
either citrate or EDTA as the anticoagulant (Gentry and
Christopher, 2001). Although the prothrombin chro-
mogenic assay estimates both vitamin K-carboxylated
and non-carboxylated vitamin K, it has proved to be
effective in detecting prothrombin reduction in a dog
with vitamin K deficiency and the subsequent increases
in activity following vitamin K therapy (Mason et al.,
2002).

Quantitative immunoassays using commercially
available antibodies directed to specific coagulation
proteins are increasing being utilized as diagnostic tools
in human medicine. However, because the currently
available antibodies are designed to react specifically
with either human or mouse proteins, it appears that
immunological assays will have limited use in veterinary
medicine until species-specific antibodies are available
(Ravanat et al., 1995; Munster et al., 2002).

Variable results for plasma FX activity are reported
among species depending on whether a coagulation or a
chromogenic assay is used. For example, in coagulant-
type assays, plasma from reptiles and birds either fails to
correct, or only partially corrects, the clotting time of
human FX-deficient plasma (Belleville et al., 1982; Le-
wis, 1996; Frost et al., 1999). In contrast, the level of FX
activity in avian and mammalian plasma appears to be
equivalent when a chromogenic assay is employed. Ac-
tivity values of 1.7" 0.5, 1.9" 0.7 and 1.9" 1.3 U/mg
have been reported for chicken, sheep and human

plasma, respectively (Frost et al., 1999). The chromo-
genic assay has also been shown to be effective in esti-
mating Factor X activity in equine (Topper and Prasse,
1998b), canine (Mason et al., 2002), bovine (Roach
et al., 2002) and feline (P.A. Gentry, unpublished data)
plasma. In the FX chromogenic assay an enzyme ex-
tracted from the venom of the Russell!s viper (Vipera
russelli), RVV-X, specifically cleaves the same internal
peptide bond in the FX molecule as does FVIIa and
FIXa (Takeya et al., 1992). Because RVV can induce
blood clot formation in fish, avian and mammalian
plasma, it would appear that there is homology in the
FX reactive site among vertebrates.

Little is known about the homology of the FVII
and IX proteins among species. These proteins circu-
late in blood at extremely low levels which presents
difficulties in obtaining sufficient blood from many
species to permit their extraction and biochemical
analysis. Currently there are no commercially available
chromogenic assays for the determination of either
FVII or FIX activity.

5. Haemostatic efficiency among vertebrates

The pioneer researchers in comparative haemostasis
documented that both in vivo bleeding times and in vi-
tro whole blood clotting times are similar in fish, birds
and carnivores and, in each species, are shorter than in
people (Hawkey, 1974; Lewis, 1996). These observations
are different from the results of most studies that have
compared the rates of in vitro fibrin formation by the
Tissue Factor (Extrinsic) pathway and the Amplification
(Intrinsic or Contact Activation) pathways (Fig. 1) using
non-species specific reagents. In diagnostic laboratories
the Tissue Factor pathway is evaluated by the pro-
thrombin time (PT) assay in which a tissue factor-
phospholipid-calcium mixture or ‘‘thromboplastin’’ is
used to initiate fibrin formation in platelet-depleted
plasma. The species specificity of tissue thromboplastin
preparations has been recognized since the early period
of coagulation research (Moore et al., 1935; Stormor-
ken, 1957; Irsigler et al., 1965). Several studies have
demonstrated that thromboplastin preparations appear
to be most efficient at inducing thrombin production
when added to homologous plasma (Janson et al., 1984;
Karges et al., 1994; Frost et al., 1999; Pavlidis et al.,
1999; Thomson et al., 2002). At present, the most widely
used commercially available thromboplastin reagents
are derived from rabbit tissues. These reagents are only
adequate for evaluating TF pathway abnormalities in
domestic animals when the clotting time of a patient!s
plasma is compared to control values obtained with the
same reagent for the same species (Meyers et al., 1987;
Parry, 1989; Mischke and Nolte, 1997). Further, Mis-
chke et al. (2003) compared the values obtained for FVII
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in canine plasma measured in the same assay system
with several different thromboplastin reagents and
found a wide range of sensitivities.

Reagent formulations are also problematic in the
evaluation of the Amplification or Contact activation
pathway with the activated partial thromboplastin time
(APTT) assay. In this assay thrombin generation is
initiated by the addition of a non-physiological, neg-
atively charged compound, e.g., celite, kaolin or ellagic
acid, suspended in a phospholipid mixture to platelet-
depleted plasma. The rationale for the assay is that the
artificial surface activates FXII which then converts
FXI to FXIa that, in turn, initiates the formation of
the ‘‘tenase’’ complex by activating FIX (Fig. 1). It has
been proposed that reptiles, birds and cetaceans lack
FXII and FXI, because not only does their plasma
exhibit prolonged APTT results compared to mam-
mals, but also their plasma fails to correct the clotting
time of human FXII deficient or FXI deficient plasma
in a modified APTT assay system (Dodds, 1981;
Belleville et al., 1982; Lewis, 1996). It is possible that
this apparent discrepancy among vertebrate plasma is
due to a lack of homology of the FXII and FXI
proteins among species. It remains to be established
whether the prolonged APTT results for non-
mammalian species is due to the inability of the arti-
ficial surface component of the reagent mixture to
activate the FXII molecule in an analogous fashion as
occurs for mammalian FXII.

Even among mammalian plasmas a discrepancy
between the ability to correct the clotting time of hu-
man FXII deficient plasma and their ability to immu-
nologically cross-react with antibodies to human,
bovine or rat FXII has been noted (Saito and Ratnoff,
1979). Differences in cross-reactivity in FXI is also
evidenced by the finding that, as occurs with Asian
elephant plasma (Gentry et al., 1996), plasma from
Elephant seals will correct the clotting time of human
FXI-deficient plasma but not bovine FXI-deficient
plasma (P.A. Gentry, unpublished data). However, like
the PT assay, the APTT assay has utility for evaluating
overall FVIII and FIX activity within a species, espe-
cially for the identification of FVIII and FIX activity
in plasmas of haemophilic dogs (Mischke, 2000a,b).

6. Thrombophilia

Thrombophilia in animals is generally associated
with pathophysiological conditions that cause altera-
tions in blood flow, vascular disorders and/or haemo-
static abnormalities (Darien, 2000; Blann and Lip,
2001). For example, in cats, thromboembolism is fre-
quently associated with cardiomyopathy (Welles et al.,
1994; Schoeman, 1999). One of the underlying causes is
thought to be turbulent blood flow through the heart

chambers and valves that induces platelet activation
and thrombus formation. The clot, or thrombus, may
be dislodged by the flowing blood to become lodged as
an embolus in other areas of the circulation such as the
distal carotid artery (Schoeman, 1999). An additional
contributory factor to thrombus formation in these
cats with cardiomyopathy may be the increased re-
sponsiveness of their platelets to agonist stimulation
(Welles et al., 1994; Helenski and Ross, 1987).
Thrombophlebitis has been reported in horses follow-
ing long-term indwelling catheter use (Lankveld et al.,
2001). In these animals, it is likely that the thrombosis
is the result of a combination of disturbance of blood
flow and activation of the coagulation system. A hy-
percoagulable condition induced by inflammatory me-
diators has been postulated as the cause of thrombosis
of limb arteries in foals with Gram-negative bactera-
emia (Triplett et al., 1996; Brianceau and Divers, 2001).
A decreased blood supply to the laminae and platelet-
dependent thrombosis of laminar vessels are observed
at the onset of lameness in experimentally induced
equine laminitis (Weiss et al., 1994, 1998). However, in
equine laminitis, the decreased platelet survival time
and the increased platelet deposition in the hoof wall
do not appear to be associated with systemic activation
of coagulation (Weiss et al., 1996). Blood vessels are
the principle target of equine arteritis virus (Del Piero,
2000). Vascular damage induced by the virus is likely
one of the causes of the thrombosis that can be a
clinical manifestation of infected horses.

There is a high incidence of clinical thrombosis or
phlebitis in dogs with canine parvoviral enteritis (Otto
et al., 2000). In a retrospective study of dogs necrop-
sied during a two-year period in one pathology de-
partment, pulmonary thromboembolism was one of
the most prevalent diseases identified (LaRue and
Murtaugh, 1990). The majority of dogs were middle-
aged or older and all had at least one underlying
disease process that is associated with haemostatic
abnormalities. It has been shown that fibrin deposition
in the lungs of cattle with pneumonic pasteurellosis is
induced by a combination of TF expression on the
surface of endothelial cells and monocytes (Weiss
et al., 1995; Rashid et al., 1997) and the activation of
plate- lets (Nyarko et al., 1998) by the infectious agent,
Pasteurella mannheimia. The importance of inflamma-
tory mediators in the systemic activation of coagula-
tion with resulting deposition of microthrombi within
the vasculature is becoming increasing appreciated in
veterinary and human medicine (Weiss and Rashid,
1998; Esmon et al., 1999; Kerr, 2001) as are the con-
sequences of interactions between blood platelets and
inflammatory cells (Coomber et al., 2001).

A genetic predisposition to developing thrombosis is
recognized among the human population (Rosendaal,
1999). Among the genetic components are deficiencies
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in the natural circulating anticoagulant proteins, such
as antithrombin, protein C and protein S, or mutations
in Factor V and prothrombin that all result in the
upregulation or dysregulation of thrombin formation
(Sykes et al., 2000; McGlennen and Key, 2002;
Ranguelov et al., 2002). Inherited abnormalities of this
type do not appear to have been reported in domestic
animals. Whether this is due to the lack of adequate
diagnostic detection systems or is a true reflection of
the lower incidence of thrombosis in domestic animal
compared to people remains to be determined. There is
some evidence, however, to suggest that animals may
be at lower risk of developing thrombotic type coag-
ulopathies. For example, although pregnancy is rec-
ognized as one of the risk factors for thrombosis in
women (Rosendaal, 1999; Davis, 2000) it is not gen-
erally associated with haemostatic abnormalities in
non-human vertebrates. This difference may be due, at
least in part, to the observation that hyper-coagulable
states develop in women but not in other mammals
during pregnancy.

Increased circulating fibrinogen levels and FVIII ac-
tivity are a recognized risk factor for thrombotic prob-
lems in people (Gerbasi et al., 1990; Davis, 2000;
Chandler et al., 2002). The circulating levels of these
proteins, along with FVII, FIX, FX and vWF, gradually
increase throughout the human gestation period (Stirling
et al., 1984; Hellgren, 1996; Davis, 2000). In contrast, no
marked alterations in in the circulating level of any of the
coagulation factors, are observed in cows (Gentry et al.,
1979; Heuwieser et al., 1990), sows (Liptrap and Gentry,
1984), mares (Sieme et al., 1991), camels (Hussein et al.,
1992), or Asian Elephants (P.A. Gentry, unpublished
data) during pregnancy. In dogs, only fibrinogen levels
exhibit a transient increase at mid-gestation (Gentry and
Liptrap, 1981; Concannon et al., 1996; Gunzel-Apel
et al., 1997).

7. Future directions

Based on available information, it appears that the
biochemical processes of thrombin generation and fibrin
clot formation are similar across species. The current
concept that the tissue factor pathway is the primary
initiating pathway in the haemostatic process is com-
patible with the emerging biological roles that the vari-
ous enzyme components of this pathway have in
non-coagulation biological reactions. For example, not
only is thrombin, and its immediate upstream serine
proteases, FXa and FVIIa, involved in inflammation and
tissue remodelling, but they also have critical roles in
angiogenesis (Carmeliet, 2001; Patterson et al., 2001;
Rickles and Falanga, 2001; Versteeg et al., 2003). These
non-haemostatic functions of the serine proteases are
mediated through their interaction with a family of

specific cell-surface receptors known as proteinase-acti-
vated receptors or PARs (Bohm et al., 1998; Coughlin,
2000; Petersen et al., 2000; Riewald and Ruf, 2002). Ev-
idence is emerging indicating that TF, a member of
the cytokine type II or interferon receptor family
(Peppelenbosch et al., 2003), may also have a role in co-
agulation-independent embryonic and tumorigenic an-
giogenesis (Versteeg et al., 2003; Griffin et al., 2001;
Rickles and Falanga, 2001). These findings, that to date
are largely based on experimental models, raise interest-
ing questions regarding the potential biological roles of
these proteins and their receptors in both normal physi-
ology and pathophysiology and point to new avenues of
investigation for this group of haemostatic proteins in
veterinary medicine.

During the past decade many of the advances in our
understanding of the normal physiological function of
haemostatic proteins have come from studies using
genetically modified mice rather than the type of studies
that were done during the 1960s and 1970s with com-
panion and domestic animal models. As a result, there
is limited information about the functional significance
of several of the more recently discovered haemostatic
proteins except in human and murine plasma. For
example, the role of the thrombomodulin–protein
C–proteins S anticoagulant system as a link between
coagulation and inflammation is well recognized in
human medicine (Cicala and Cirino, 1998; Esmon,
2001) but it has not been extensively examined in vet-
erinary medicine. Likewise, the association between
plasma tissue factor pathway inhibitor (TFPI) activity
and the attenuation of pathological thrombus forma-
tion has been established in human patients and in
animal models of intravascular thrombosis (Golino
et al., 2002) but has not been explored in veterinary
medicine. Part of the reason for this lack of informa-
tion is the absence of commercially available reagents
that are satisfactory for evaluating these haemostatic
proteins in veterinary diagnostic laboratories. In the
absence of a broad panel of reliable laboratory assay
procedures, it will likely be some time before the co-
agulant-dependent and coagulation-independent roles
of the various haemostatic proteins are established in
veterinary medicine.
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